Response inhibition in the stop-signal paradigm

Frederick Verbruggen¹,² and Gordon D. Logan¹

¹Department of Psychology, Vanderbilt University, Nashville, TN 37203, USA
²Department of Experimental Psychology, Ghent University, B-9000 Ghent, Belgium

Response inhibition is a hallmark of executive control. The concept refers to the suppression of actions that are no longer required or that are inappropriate, which supports flexible and goal-directed behavior in ever-changing environments. The stop-signal paradigm is most suitable for the study of response inhibition in a laboratory setting. The paradigm has become increasingly popular in cognitive psychology, cognitive neuroscience and psychopathology. We review recent findings in the stop-signal literature with the specific aim of demonstrating how each of these different fields contributes to a better understanding of the processes involved in inhibiting a response and monitoring stopping performance, and more generally, discovering how behavior is controlled.

People can readily stop talking, walking, typing and so on, in response to changes in internal states or changes in the environment. This ability to inhibit inappropriate or irrelevant responses is a hallmark of executive control. The role of inhibition in many experimental paradigms is debated, but most researchers agree that some kind of inhibition is involved in deliberately stopping a motor response. Here, we focus on the stop-signal paradigm [1], which has proven to be a useful tool for the study of response inhibition in cognitive psychology, cognitive neuroscience and psychopathology. We review recent developments in the stop-signal paradigm in these different fields. The focus is primarily on the inhibition of manual responses. Studies of oculomotor inhibition are discussed in Box 1.

Successful stopping: inhibition and performance monitoring

In the stop-signal paradigm, subjects perform a go task such as reporting the identity of a stimulus. Occasionally, the go stimulus is followed by a stop signal, which instructs subjects to withhold the response (Figure 1). Stopping a response requires a fast control mechanism that prevents the execution of the motor response [1]. This process interacts with slower control mechanisms that monitor and adjust performance [2].

The race between going and stopping

Performance in the stop-signal paradigm is modeled as a race between a ‘go process’, which is triggered by the presentation of the go stimulus, and a ‘stop process’, which is triggered by the presentation of the stop signal. When the stop process finishes before the go process, the response is inhibited; when the go processes finishes before the stop process, the response is emitted. The latency of the stop process (stop-signal reaction time [SSRT]) is covert and must be estimated from a stochastic model, such as the independent race model [3] (Box 2). SSRT has proven to be an important measure of the cognitive control processes that are involved in stopping. Cognitive neuroscientists use SSRT as a criterion to determine whether neural processes participate directly in response inhibition (Box 1). Psychopathologists use SSRT to study inhibitory deficits in different patient groups (see later). Developmental scientists found that SSRT is elevated in younger children and older adults, compared with young adults. In addition, a comparison of SSRT and go reaction time (RT) showed that going and stopping develop and decline independently [4–6].

Monitoring and adjusting go and stop performance

Successful performance in the stop-signal paradigm also involves monitoring go and stop performance and adjusting response strategies to find an optimal balance between the conflicting demands of the go task (‘respond as quickly as possible’) and the stop task (‘stop the response’). Several studies indicate that subjects change response strategies proactively when they expect stop signals to occur, trading speed in the go task for success in the stop task [2, 7]. Many studies indicate that subjects also change response strategies reactively after stop-signal trials [8–11]. Some show that go RT increases after unsuccessful inhibition, reminiscent of the post-error slowing observed in choice reaction tasks. Others show that go RT increases after successful stopping, which is inconsistent with error-correction but indicates a shift in priority to the stop task after a stop signal. Recent studies show that stimulus repetition might be a crucial variable: responding after successful stopping is typically slower when the stimulus from the stop trial is repeated, as if the stimulus was associated with stopping, and retrieval of that association impaired go performance [8]. This stimulus-specific slowing can persist over many intervening trials [10] and might support the development of automatic inhibition [12].

Interim conclusions

Cognitive psychologists have identified the computational mechanisms underlying performance in the stop-signal paradigm, identifying a fast-acting stop process that pro-
duces immediate inhibition and slower monitoring and adjustment processes that optimize performance. In recent years, many insights into the underlying cognitive and neural mechanisms of response inhibition have come from cognitive neuroscience and psychopathology. In the next sections, we review the most important findings in these fields and show how they contribute to a better understanding of control processes involved in stopping and monitoring stop performance.

Neural substrates of stopping and monitoring

Going is associated with activation of a cortico-basal-ganglia-thalamocortical circuit [13]. Recent studies using a variety of methods indicate that stopping is associated with activation of a fronto-basal-ganglia circuit that includes inferior frontal gyrus (IFG; ventrolateral prefrontal cortex), middle frontal gyrus (dorsolateral prefrontal cortex), medial frontal gyrus (MFG) and basal ganglia[14–18]. Results are sometimes inconsistent between studies, possibly because they used different methods for isolating inhibition-related regions.

A fronto-basal-ganglia circuit for response inhibition

Recent neuroimaging research has indicated that right IFG is involved in stopping (e.g. Refs [14,15,18]), and possibly other kinds of inhibition (Box 3). This region shows increased activation when stopping is successful, and the magnitude of the activation correlates negatively with SSRT [14,17,19]. Some studies showed that right IFG is activated to some degree on unsuccessful stop trials (e.g. Ref. [17]), but not on no-stop-signal trials (e.g. Refs [17,18]). Successful stopping is also associated with pre-supple-
Review

Box 2. The independent and interactive race models of response inhibition

Logan and Cowan [3] developed an independent race model (Figure Ia) that described the probability of responding on a stop-signal trial, \(p(\text{respond} \mid \text{signal}) \), the latency of go RTs that escape inhibition and SSRT. According to the model, \(p(\text{respond} \mid \text{signal}) \) depends primarily on three factors: SSD, go RT and SSRT. First, increasing SSD increases \(p(\text{respond} \mid \text{signal}) \); the stop process starts later and, therefore, finishes later relative to the go process (Figure Ib). Second, for every SSD, increasing go RT decreases \(p(\text{respond} \mid \text{signal}) \) because the probability that the stop process finishes before the go process increases (Figure Ic). Third, for every SSD, increasing SSRT increases \(p(\text{respond} \mid \text{signal}) \) because the probability that the stop process finishes after the go process increases (Figure Id). Importantly, the independent race model provides methods for estimating SSRT. The model assumes that the stop process begins at SSD, which is observed. The point at which the stop process finishes can be estimated from the observed go-RT distribution on no-signal trials and the observed \(p(\text{respond} \mid \text{signal}) \) for a given SSD (Figure Ia). SSRT can be estimated by subtracting SSD from the finishing time (for reviews of estimation methods of SSRT, see Refs [1,63]).

The independent race model assumes stochastic independence between the go and stop process. However, complete independence between the go and stop process is unlikely. Boucher et al. [64] proposed an interactive race model, in which the go and stop processes are independent for much of their latencies and interact strongly near the end (Figure II). The go process is initiated by the go stimulus and a go unit is activated after an afferent delay. The stop process is initiated by the stop signal and a stop unit is activated after an afferent delay. Once the stop unit is activated, it inhibits go processing strongly and quickly. In this model, SSRT primarily reflects the period before the stop unit is activated, during which stop and go processing are independent, so its predictions correspond to those of the independent race model [64].

![Figure I. The independent race model. (a) Graphic representation of the assumptions of the independent race model [3], indicating how the probability of responding \(p(\text{respond} \mid \text{signal}) \) and the probability of inhibiting \(p(\text{inhibit} \mid \text{signal}) \) depend on (b) SSD, (c) the distribution of go RTs and (d) SSRT. \(p(\text{respond} \mid \text{signal}) \) is represented by the area under the curve to the left of each red vertical line.]

![Figure II. Graphic representation of the assumptions of the interactive race model [64], indicating how go activation on a signal-inhibit trial is inhibited when the stop unit is activated.]

Box 3. One or many inhibitory mechanisms?

An important issue is whether the inhibitory mechanism that is involved in the stop-signal paradigm is also involved in other inhibitory paradigms. Behavioral results indicate a functional relationship between stop-signal inhibition and interference control in the Stroop task and the flanker task. Incongruent trials produce interference and prolong SSRT in these tasks [65,66]. Individual-difference studies show correlations between stop-signal inhibition and interference control [67]. Neuroimaging studies show activation in right IFG and pre-SMA in different inhibition tasks [68,69]. However, this need not imply that the same inhibitory circuit is involved. rTMS of the right IFG influenced response inhibition but not interference control in a flanker task with stop signals [21]. Future research should clarify whether functional dependence between different kinds of inhibition implies similar neural mechanisms.

A related issue is whether the same inhibitory mechanism is involved in stopping responses with different effectors. SSRTs are similar for interrupting speech and interrupting manual responses [70], but SSRT is typically shorter for eye movements than for hand movements (Box 1). fMRI data indicate that right IFG and pre-SMA are involved in inhibition of hand movements and suppression of speech, but STN was activated only for inhibition of hand movements [70]. However, activation of STN is hard to detect in fMRI. One fMRI study compared inhibition of eye and hand movements directly, and found common activation in right IFG and medial frontal regions (among other regions) [71]. Inhibition of hand movements was associated with activation in more ventral and posterior parts of right IFG, whereas inhibition of eye movements was associated with activation in more dorsal and anterior parts of right IFG. However, no eye movements were recorded in the scanner, so it is not clear whether the common activation is because of inhibition or performance monitoring. Future research should clarify how general the inhibitory circuits are.
in monitoring or resolving the conflict between the opposing task demands in the stop-signal paradigm [14,20]. However, the poor temporal resolution of functional magnetic resonance imaging (fMRI) makes it difficult to determine the specific role of right IFG and pre-SMA (Box 1).

The involvement of right IFG and pre-SMA in stopping is further supported by results of transcranial magnetic stimulation (TMS) and lesion studies. Repetitive TMS (rTMS) of right IFG (but not left IFG or right middle frontal gyrus) impaired stopping but not going [21,22]. By contrast, rTMS over right dorsal premotor cortex influenced going but not stopping. These findings support the theoretical distinction between stop and go processes in formal race models.

Response inhibition is impaired in patients with lesions to right IFG but not left IFG [23]; moreover, the magnitude of the lesion to right IFG correlated with SSRT but not with go RT. Similarly, lesions to right SMA and pre-SMA impaired stopping without greatly influencing going [24].

Several subcortical regions might also play an important part in stopping. fMRI studies showed inhibition-related activation in basal ganglia, including the subthalamus nucleus (STN) [17] and striatum [18,25]. Lesions to the basal ganglia impaired stop performance for both humans and rodents [26–28], whereas deep-brain stimulation of STN in Parkinson patients enhanced inhibitory control [29]. Lesions to STN and stimulation of STN in Parkinson patients influence both go RT and SSRT [29,30]. However, the effects of STN stimulation on go RT and SSRT might be functionally independent [29].

Combined, these studies indicate that right IFG, pre-SMA and basal ganglia are part of a fronto-basal-ganglia inhibition network, although the exact role of these regions is debated. Some researchers proposed that activation in right IFG or pre-SMA leads to a suppression of motor output through a projection to STN [14,17,31]. When STN is activated, the internal segment of the globus pallidus becomes activated and motor output is suppressed. In most stop-signal situations, this suppression is very general and might affect all response tendencies including activation in muscles that are irrelevant to the task [32–34].

Neural substrates of monitoring

Unsuccessful inhibition is associated with an error-related negativity (ERN) in the electroencephalogram [35], which is reminiscent of the ERN that is typically observed after choice errors in reaction tasks. Event-related fMRI studies showed that (mainly) parietal and frontal brain regions are more activated when inhibition is unsuccessful [15,16,18,19]. Unsuccessful inhibition is associated with greater activation of medial frontal regions, including anterior cingulate cortex (ACC), pre-SMA and middle frontal regions. Some studies report that ACC is also activated on successful stop-signal trials (e.g. Ref. [17]), which indicates that this region is involved in the monitoring of stopping performance. Consistent with this idea, single-cell studies show that ACC modulation occurs after SSRT, which is too late to be involved directly in inhibiting the response; instead, the neurons signal reward and error (Box 1). Medial frontal regions are commonly associated with detection of errors and detection of conflict between responses and action plans (monitoring behavior), whereas middle frontal regions are commonly associated with adjusting behavior after conflict or errors [36]. Some researchers proposed that activation of middle frontal regions reflects adjusting response strategies to balance the opposing demands of the go and stop tasks [18].

Combined, behavioral data (post-error slowing) and neural data (ERN and activation of medial and middle frontal regions) indicate that monitoring and adjusting performance in the stop-signal paradigm might be similar to monitoring and adjusting performance in paradigms that do not involve inhibition of motor responses. Moreover, the neural mechanisms involved in monitoring can be distinguished from the neural mechanisms involved directly in stopping (Box 1). However, it is unclear the extent to which activation associated with monitoring actually reflects memory-retrieval effects (Box 4).

Inhibitory disorders and psychopathology

Response-inhibition deficits have been linked to several psychopathological and neurological disorders. Some disorders, such as autism [37] and schizophrenia [38], are associated with general cognitive impairments in addition to inhibitory deficits. Other disorders, such as attention-deficit/hyperactivity disorder (ADHD) (for a metanalysis,
see Ref. [39]) and compulsive disorders [40], are described specifically as inhibitory disorders. In the following sections, we review stop-signal studies of inhibitory disorders. These reveal important insight into the underlying cognitive and neural mechanisms of response inhibition and monitoring.

Attention-deficit/hyperactivity disorder

Probably the most studied clinical group in the stop-signal literature is children with ADHD. ADHD is typically associated with poor control of impulses. Many stop-signal studies have shown slower SSRT in people with ADHD [39] and in their relatives [41]. These findings led researchers to propose that stop-signal inhibition might be an endophenotype of ADHD [41,42]. In children with ADHD, slower SSRT is often accompanied by slower go RT, indicating a general deficit in cognitive control [38]. By contrast, in adults with ADHD, SSRT is impaired but go RT is not, indicating a selective deficit in inhibition. The inhibitory deficit ADHD is linked to functional and structural differences in the fronto-basal-ganglia inhibitory network (for reviews, see Refs [42,43]). However, the amplitude of non-inhibitory (attentional) components in the electroencephalogram is also reduced in ADHD, which indicates that the response-inhibition deficit might have multiple origins [44].

Performance monitoring might also be impaired in ADHD. Children with ADHD slow their go RTs less after unsuccessful stopping than control subjects [9]. Post-error adjustments were not correlated with SSRT, indicating a dissociation of response inhibition and monitoring or adjustment. It is not clear whether the behavioral impairment reflects deficits in monitoring or deficits in adjustment. However, neural data indicate a monitoring deficit: unsuccessful stopping in ADHD is associated with a reduced amplitude of the ERN [45] and a reduced magnitude of activation in posterior and anterior parts of the cingulate gyrus and in left ventrolateral prefrontal cortex [46,47]. Combined, behavioral and neural data indicate an error-monitoring deficit in ADHD that can be dissociated from the response-inhibition deficit.

Poor inhibitory control over obsessions, compulsions, tics and urges

Inhibitory deficits are associated with disorders other than ADHD. SSRT is prolonged in people with obsessive-compulsive disorder (OCD) and their first-degree relatives, people with trichotillomania (repetitive hair pulling) and people with Tourette’s syndrome (e.g. Refs [40,48,49]). These inhibitory deficits result in poor control of behavior, which is characteristic of these disorders. Typically, go RT is not affected, indicating a selective deficit in inhibition. The inhibitory deficit in OCD has been linked to reduced grey matter in the orbitofrontal and right inferior frontal regions [49]. A recent MRI study of people with OCD found reduced activation in inferior and orbital fronto-striatal-hamnic brain regions when inhibition was successful and reduced activation in mesial and dorsolateral prefrontal cortices when inhibition was unsuccessful. This indicates that response inhibition and performance monitoring are both impaired in OCD [50]. However, these results should be interpreted cautiously because sample size was small.

Poor inhibitory control is also characteristic of substance-abuse disorders. SSRT is prolonged in chronic cocaine users [51], chronic methamphetamine users [52] and alcohol-dependent subjects [48], compared with normal control subjects, indicating a response-inhibition deficit. It is not clear whether these SSRT differences reflect pre-morbid differences in inhibitory control, post-morbid abnormalities because of chronic chemical abuse or both. However, prolonged SSRTs in high-risk adolescents predict alcoholism and other substance-abuse disorders [53], which indicates that prolonged SSRTs in chronic substance users might reflect pre-morbid differences in inhibitory control.

Concluding remarks

The stop-signal paradigm has become a popular tool for the study of response inhibition in cognitive psychology, cognitive neuroscience and psychopathology. Through this paradigm, findings from different fields of research have stimulated each other, leading to integrative, converging conclusions about cognitive control processes involved in stopping and performance monitoring. Cognitive psychologists modeled response inhibition as a race between a go process and a stop process. Cognitive neuroscientists showed that these processes might activate brain regions differently, and psychopathologists showed selective deficits in inhibition. Studies in each field indicate that successful stop performance requires effective performance monitoring and behavior adjustment, in addition to an efficient stop process, to find an optimal balance between the opposing task demands of the stop-signal paradigm.

Inhibitory processes and monitoring have been dissociated behaviorally and neurally. The most important challenge for the future is to determine how inhibitory processes and monitoring jointly contribute to successful stop performance and how the neural substrates of these processes carry out the required computation. Successful stopping might require some general processes that are not unique to response inhibition, in addition to some specific processes that are unique. Future research should further differentiate these processes and their associated brain circuits. This will require combining different methods and using techniques that have sufficient temporal resolution to distinguish between processes that occur before and after SSRT (Box 4).

Acknowledgements

F.V and G.L thank Jeff Schall, Tom Palmeri, Leanne Boucher, Arnaud Szmalec, Matt Crump and three anonymous reviewers for their useful comments on this manuscript, and Jeff Shall for providing the data for Figure I in Box 1. F.V. is a Postdoctoral Fellow of the Research Foundation – Flanders (FWO-Vlaanderen). The work in G.L.’s laboratory is supported by grant BCS 0646588 from the National Science Foundation, grant FA9550-07-1-0192 from the Air Force Office of Scientific Research and grant R01-MH73579-01 from the National Institute of Mental Health.

References
